Welcome to the ninth annual North American Computational Linguistics Olympiad! You are among the few, the brave, and the brilliant, to participate in this unique event. In order to be completely fair to all participants across North America, we need you to read, understand, and follow these rules completely.

Rules

1. The contest is three hours long and includes eight problems, labeled A to H.
2. Follow the facilitators' instructions carefully.
3. If you want clarification on any of the problems, talk to a facilitator. The facilitator will consult with the jury before answering.
4. You may not discuss the problems with anyone except as described in items 3 & 12.
5. Each problem is worth a specified number of points, with a total of 100 points.
 In this year’s open round, no points will be given for explanations. Instead, make sure to fill out all the answer boxes properly.
6. All your answers should be in the Answer Sheets at the end of this booklet. ONLY THE ANSWER SHEETS WILL BE GRADED.
7. Write your name and registration number on each page:
 Here is an example: Jessica Sawyer #850
8. The top 100 participants (approximately) across the continent in the open round will be invited to the second round.
9. Each problem has been thoroughly checked by linguists and computer scientists as well as students like you for clarity, accuracy, and solvability. Some problems are more difficult than others, but all can be solved using ordinary reasoning and some basic analytic skills. You don’t need to know anything about linguistics or about these languages in order to solve them.
10. If we have done our job well, very few people will solve all these problems completely in the time allotted. So, don’t be discouraged if you don’t finish everything.
11. If you have any comments, suggestions or complaints about the competition, we ask you to remember these for the web-based evaluation. We will send you an e-mail shortly after the competition is finished with instructions on how to fill it out.
12. **DO NOT DISCUSS THE PROBLEMS UNTIL THEY HAVE BEEN POSTED ONLINE! THIS MAY BE SEVERAL WEEKS AFTER THE END OF THE CONTEST.**

Oh, and have fun!
NACLO 2015 Organizers

Program Committee:
Susan Barry, Manchester Metropolitan University
Aleka Blackwell, Middle Tennessee State University
Jordan Boyd-Graber, University of Colorado
 Alan Chang, University of Chicago
Dorottya Demszky, Princeton University
 John Denero, Google
Jason Eisner, Johns Hopkins University
 Caroline Ellison, Stanford University
Josh Falk, University of Chicago
Anatole Gershman, Carnegie Mellon University
Linus Hamilton, Massachusetts Institute of Technology
Lars Hellan, Norwegian University of Science and Technology
Adam Hesterberg, Massachusetts Institute of Technology (chair)
 Jordan Ho, University of Toronto
Dick Hudson, University College London
 Alex Iriza, Princeton University
Rowan Jacobs, University of Chicago
Wesley Jones, University of Chicago
 Ben King, University of Michigan
 Greg Kondrak, University of Alberta
Jonathan Kummerfeld, University of California, Berkeley
Mary Laughren, University of Queensland
 Lori Levin, Carnegie Mellon University
 Richard Littauer
Patrick Littell, University of British Columbia
 Daniel Lovsted, McGill University
 Jonathan May, Information Sciences Institute
 Tom McCoy, Yale University
Rachel McEnroe, University of Chicago
 David Mortensen
 Heather Newell, Université du Québec à Montréal
 Babette Newsome, Aquinas College
 David Palfreyman, Zayed University
 James Pustejovsky, Brandeis University
 Dragomir Radev, University of Michigan
 Verna Rieschild, Macquarie University
 Catherine Sheard, Oxford University
 Ben Sklaroff, University of California, Berkeley
 Harold Somers, All Ireland Linguistics Olympiad
 Chelsea Voss, Massachusetts Institute of Technology
 Alex Wade, Stanford University

n a c l o
NACLO 2015 Organizers (cont’d)

Problem Credits:
Problem A: Mike Swan
Problem B: Bozhidar Bozhanov
Problem C: Josh Falk
Problem D: Catherine Sheard
Problem E: Jonathan May
Problem F: Harold Somers
Problem G: Dragomir Radev, Christiane Fellbaum, and Jonathan May
Problem H: Alex Wade

Organizing Committee:
Mary Jo Bensasi, Carnegie Mellon University
Aleka Blackwell, Middle Tennessee State University
Janis Chan, University of Western Ontario
Dorottya Demszky, Princeton University
Caroline Ellison, Stanford University
Josh Falk, University of Chicago
Matthew Gardner, Carnegie Mellon University
Harry Go, Washington University in St. Louis
Adam Hesterberg, Massachusetts Institute of Technology
Jordan Ho, University of Toronto
Simon Huang, University of Waterloo
Alex Iriza, Princeton University
Wesley Jones, University of Chicago
Ben King, University of Michigan
Aaron Klein, Harvard University
Andrew Lamont, Indiana University
Stella Lau, University of Cambridge
Lori Levin, Carnegie Mellon University (chair)
Jeffrey Ling, Harvard University
Patrick Littell, University of British Columbia
Daniel Lovsted, McGill University
Tom McCoy, Yale University
Rachel McEnroe, University of Chicago
Graham Morehead, University of Maine
David Mortensen
Helen Mukomel, Carnegie Mellon University
Heather Newell, Université du Québec à Montréal
David Penco, University of British Columbia
James Pustejovsky, Brandeis University
Dragomir Radev, University of Michigan
Alex Wade, Stanford University
Yilu Zhou, Fordham University
NACLO 2015 Organizers (cont’d)

Website and Registration:
Graham Morehead, University of Maine

US Team Coaches:
Dragomir Radev, University of Michigan (head coach)
Lori Levin, Carnegie Mellon University (coach)

Canadian Coordinator and Team Coach:
Patrick Littell, University of British Columbia

USA Contest Site Coordinators:
Bemidji State University: Porter Coggins
Brandeis University: James Pustejovsky
Brigham Young University: Dirk Elzinga, Deryle Lonsdale
Carnegie Mellon University: Mary Jo Bensasi, Lori Levin
College of William and Mary: Anya Lunden
Columbia University: Amy Cooper, Kathy McKeown
Cornell University: Abby Cohn, Sam Tilsen
Dartmouth College: Sravana Reddy
Emory University: Jinho Choi, Phillip Wolff
Georgetown University: Daniel Simonson
Goshen College: Peter Miller
Johns Hopkins University: Mark Dredze
Massachusetts Institute of Technology: Adam Hesterberg, Sophie Mori
Middle Tennessee State University: Aleka Blackwell
Minnesota State University Mankato: Rebecca Bates, Dean Kelley
Northeastern Illinois University: J. P. Boyle, R. Hallett, Judith Kaplan-Weinger, K. Konopka
Ohio State University: Micha Elsner, Michael White
Princeton University: Dorottya Demszky, Christiane Fellbaum, Alex Iriza
San Diego State University: Rob Malouf
San Jose State University: Maya Sun
Stanford University: Sarah Yamamoto
Stony Brook University: Kristen La Magna, Lori Repetti
Union College: Kristina Striegnitz, Nick Webb
University of Alabama, Birmingham: Steven Bethard
University of Colorado at Boulder: Silva Chang
University of Houston: Thamar Solorio
University of Illinois at Urbana-Champaign: Julia Hockenmaier
University of Maine: George Markowsky
University of Maryland: Julia Buffinton, Tom Roberts
University of Memphis: Vasile Rus
University of Michigan: Steven Abney, Sally Thomason
University of North Carolina, Charlotte: Wlodek Zadrozny
University of North Texas: Genene Murphy, Rodney Nielsen
University of Notre Dame: David Chiang
University of Pennsylvania: Chris Callison-Burch, Cheryl Hickey, Mitch Marcus
University of Southern California: Ashish Vaswani
University of Texas: Stephen Weschler
University of Texas at Dallas: Vincent Ng
University of Utah: Aniko Czirmaz, Mengqi Wang, Andrew Zupon
University of Washington: Jim Hoard
University of Wisconsin, Eau Claire: Lynsey Wolter
University of Wisconsin, Madison: Steve Lacy
University of Wisconsin, Milwaukee: Joyce Boyland, Hanyon Park, Gabriella Pinter
Western Michigan University: Shannon Houtrouw, John Kapenga
Western Washington University: Kristin Denham
Yale University: Aidan Kaplan, Alexa Little, Tom McCoy, Raffaella Zanuttini
Canada Contest Site Coordinators:
Dalhousie University: Magdalena Jankowska, Vlado Keselj, Armin Sajadi
McGill University: Junko Shimoyama, Michael Wagner
Simon Fraser University: John Alderete, Marion Caldecott, Maite Taboada
University of Alberta: Herbert Colston, Sally Rice
University of British Columbia: David Penco, Hotze Rullman
University of Lethbridge: Yliias Chali
University of Ottawa: Diana Inkpen
University of Toronto: Jordan Ho, Pen Long
University of Western Ontario: Janis Chan

High school sites: Dragomir Radev

Booklet Editors:
Andrew Lamont, Indiana University
Dragomir Radev, University of Michigan

Sponsorship Chair:
James Pustejovsky, Brandeis University

Corporate, Academic, and Government Sponsors:
Linguistic Society of America
The North American Chapter of the Association for Computational Linguistics
Carnegie Mellon University
Yahoo!
The National Science Foundation
The University of Michigan
Brandeis University Computer Science Department
Choosito
Many generous individual donors

Special thanks to:
Tatiana Korelsky, Joan Maling, and D. Terrence Langendoen, US National Science Foundation
James Pustejovsky for his personal sponsorship
And the hosts of the 100+ High School Sites

All material in this booklet © 2015, North American Computational Linguistics Olympiad and the authors of the individual problems. Please do not copy or distribute without permission.
As well as more than 90 high schools throughout the USA and Canada
Danish, spoken in Denmark, and Swedish, spoken in Sweden, are closely related languages. This means that they have many similarities.

The English words the and a are called articles. The is called a ‘definite article’ and a is called an ‘indefinite article’.

Read the Danish and Swedish phrases below, and look for patterns, similarities and differences. In particular, look at how articles are used. Then complete the exercise below; write your answers in the Answer Sheets.

<table>
<thead>
<tr>
<th>Danish</th>
<th>Swedish</th>
</tr>
</thead>
<tbody>
<tr>
<td>en hund</td>
<td>en hund</td>
</tr>
<tr>
<td>en stor hund</td>
<td>en stor hund</td>
</tr>
<tr>
<td>hunden</td>
<td>hunden</td>
</tr>
<tr>
<td>den store hund</td>
<td>den stora hunden</td>
</tr>
</tbody>
</table>

A1. Which of these phrases are Danish and which are Swedish? Write a 'D' for Danish or as 'S' for Swedish in the Answer Sheets.

a. en mand a man
b. en ung man a young man
c. manden the man
d. en ung mand a young man
e. den unge mand the young man
f. mannen the man
g. den unge mannen the young man
h. en man a man
Given are Greek toponyms (place names), written in the Greek alphabet (without marking stress), as well as their ancient and modern pronunciations. Note: the middle columns are transcribed using the International Phonetic Alphabet (IPA). ḷ after a consonant denotes that it’s aspirated (pronounced with additional breath). x is the ch sound in Bach. γ is a voiced x; that is it is pronounced with the vocal cords vibrating (just like b is a voiced p). ɣ is the first consonant in the British pronunciation of hue; j is a voiced c. θ is the th in cloth; ð is a voiced θ as in the th in then. : after a vowel denotes length. ɔ is the vowel in caught. ɛ is the vowel in bet.

B1. Your task is to fill in the blanks. Write your answers in the answer sheets.

<table>
<thead>
<tr>
<th>Ancient Greek</th>
<th>Modern Greek</th>
<th>Toponym</th>
</tr>
</thead>
<tbody>
<tr>
<td>Αθως</td>
<td>/atʰɔːs/</td>
<td>Athos</td>
</tr>
<tr>
<td>Θουριοι</td>
<td>/θουριοι/</td>
<td>Thurii</td>
</tr>
<tr>
<td>Αργος</td>
<td>/argon/</td>
<td>Argos</td>
</tr>
<tr>
<td>Φρεγέλλα</td>
<td>/pʰregella/</td>
<td>Fregellae</td>
</tr>
<tr>
<td>Χρυση</td>
<td>/kʰruseː/</td>
<td>Chryse</td>
</tr>
<tr>
<td>Γολγόθα</td>
<td>/golgota/</td>
<td>Golgotha</td>
</tr>
<tr>
<td>Δελφοι</td>
<td>/delpʰoi/</td>
<td>Delphi</td>
</tr>
<tr>
<td>Εφέσος</td>
<td>/epʰesos/</td>
<td>Ephesus</td>
</tr>
<tr>
<td>Θεοδωσία</td>
<td>/θεοδωσία/</td>
<td>Theodosia</td>
</tr>
<tr>
<td>Αιγινα</td>
<td>/aigina/</td>
<td>Aegina</td>
</tr>
<tr>
<td>Καληδόνια</td>
<td>/καληδόνια/</td>
<td>Caledonia</td>
</tr>
<tr>
<td>Καδμεία</td>
<td>/καδμεία/</td>
<td>Cadmea</td>
</tr>
<tr>
<td>Σαρδείς</td>
<td>/σαρδείς/</td>
<td>Sardis</td>
</tr>
<tr>
<td>Φθία</td>
<td>/φθία/</td>
<td>Phthia</td>
</tr>
<tr>
<td>Αχέρον</td>
<td>/αχέρον/</td>
<td>Acheron</td>
</tr>
<tr>
<td>Χίος</td>
<td>/kʰios/</td>
<td>Chios</td>
</tr>
<tr>
<td>Θυμαινα</td>
<td>/θυμαινα/</td>
<td>Thymaina</td>
</tr>
<tr>
<td>Χαονία</td>
<td>/καονία/</td>
<td>Chaonia</td>
</tr>
<tr>
<td>Μοσχα</td>
<td>/μοσχα/</td>
<td>Moscow</td>
</tr>
<tr>
<td>Βλαχια</td>
<td>(a)</td>
<td>Romania¹</td>
</tr>
<tr>
<td>Φλεγέθον</td>
<td>(c)</td>
<td>Phlegethon</td>
</tr>
<tr>
<td>Βηνυτος</td>
<td>(e)</td>
<td>Beirut</td>
</tr>
<tr>
<td>(g)</td>
<td>(f)</td>
<td>Phrygia</td>
</tr>
<tr>
<td>Βαβυλωνια</td>
<td>(i)</td>
<td>(k)</td>
</tr>
</tbody>
</table>

¹There was no Ancient Greek word for Moscow, but if there had been, it'd've been this.
²Note: the toponym for Romania in Greek actually refers to a region that initially constituted the kingdom of Romania.
Languages have rules or constraints about how sounds should be put together to make words. Not just any combination of sounds can be a word. Linguists refer to these restrictions on word formation as the phonotactics of a language. There are many types of rules one can write to describe sound patterns. Consider the following three rule types:

Counting Mod 2: These constraints require that a certain sound occur either an even or odd number of times. We write Counting Mod 2 constraints as follows: either \(X = \text{Even} \), meaning the sound \(X \) must occur an even number of times, or \(X = \text{Odd} \), meaning the sound \(X \) must occur an odd number of times. For example, \(b = \text{Even} \) requires that there be an even number of \(b \)'s in every word. Thus, \(b = \text{Even} \) rules out words like “bas” or “bisbanib” while allowing words like “tas” or “bistanib”. The rule \(b = \text{Odd} \) would do the exact opposite: allow “bas” and “bisbanib” but rule out “tas” and “bistanib”.

Strictly 2-Local: These constraints prohibit two sounds from occurring right next to each other...meaning that \(X \) and \(Y \) cannot occur right next to each other in any order. For example, \(*bn \) prohibits a \(b \) right before an \(n \) and an \(n \) right before a \(b \). Thus, \(*bn \) rules out “abnik” and “anbik” as possible words, while allowing words like “atnik” or “abanik”.

Strictly 2-Piecewise: These constraints prohibit two sounds from occurring together in the same word...meaning that \(X \) and \(Y \) must not occur in the same word, no matter what may or may not come in between them. For example, \(*[bn] \) prohibits words with both \(b \) and \(n \). Like \(*bn \), \(*[bn] \) allows words like “atnik” and rules out “abnik”, but unlike \(*bn \), \(*[bn] \) also rules out “abanik” and “anabik”.

Out of these three types of rules, only two are known to be needed when describing the phonotactics of human languages. In this problem, you will write constraints in the forms just described in order to account for some of the phonotactics of Bolivian Aymara, an indigenous language spoken in Bolivia. The following is a list of acceptable and unacceptable words in Aymara:

<table>
<thead>
<tr>
<th>Acceptable:</th>
<th>Unacceptable:</th>
</tr>
</thead>
<tbody>
<tr>
<td>tama</td>
<td>waketi</td>
</tr>
<tr>
<td>pisi</td>
<td>kutaqa</td>
</tr>
<tr>
<td>kikpa</td>
<td>maqetaqi</td>
</tr>
<tr>
<td>putu</td>
<td>weqo</td>
</tr>
<tr>
<td>jaqet</td>
<td>janana</td>
</tr>
<tr>
<td>unoqaña</td>
<td>oqara</td>
</tr>
<tr>
<td>purapa</td>
<td>qolqeni</td>
</tr>
<tr>
<td>kunka</td>
<td>mayni</td>
</tr>
<tr>
<td>taqe</td>
<td>qoqara</td>
</tr>
<tr>
<td>tarkaka</td>
<td>nayra</td>
</tr>
<tr>
<td>jiliri</td>
<td>taqaki</td>
</tr>
<tr>
<td>sipita</td>
<td>jakaqe</td>
</tr>
<tr>
<td>qawa</td>
<td>temaka</td>
</tr>
<tr>
<td>qemi</td>
<td>kape</td>
</tr>
<tr>
<td>qapa</td>
<td>tiwula</td>
</tr>
</tbody>
</table>

Answer these questions in the Answer Sheets.

C1. Write a set of constraints that will rule out all of the bad forms while permitting all of the good forms. Use as few constraints as possible. Follow the format described above for writing constraints. Note: you don’t need to account for every pattern you might find. You will lose points only for ruling out the acceptable forms, failing to rule out the unacceptable forms, or using more constraints than necessary.

C2. Which type of constraint isn’t needed?
Old Norse was the language of the Vikings, the language spoken in Scandinavia and in the Scandinavian settlements found throughout the Northern Hemisphere from the 700s through the 1300s. Much as Latin was the forerunner of the Romance languages, among them Italian, Spanish, and French, Old Norse was the ancestor of the North Germanic languages: Icelandic, Faroese, Norwegian, Danish, and Swedish. Old Norse was written first in runic alphabets, then later in the Roman alphabet. The first runic alphabet, found on inscriptions dating from throughout the first millennium CE, is known as “Elder Futhark” and was used for both proto-Norse and early Old Norse.

Below are nine Anglicized names of Old Norse gods and the nine Elder Futhark names to which they correspond. Listed below are also two other runic names for gods.

Anglicized names

Old Norse Runes
(1) BFRW (4) MFXR (7) SORD (10) SMIT
(2) ORD (5) TOTT (8) WNIOR (11) ETI
(3) IDNT (6) PRMISF (9) PRMIR

Answer these questions in the Answer Sheets.

D1. Match the Anglicized names to the correct Elder Futhark names.

D2. What are the two leftover Elder Futhark names, in the Roman alphabet?

D3. Write the runic names of the following gods:
 a. Tyr
 b. Ran
 c. Sif
Yoda, the lovable green Jedi from the Star Wars franchise, speaks the same language as most of the other characters in the series (a language that seems a whole lot like English). However, his sentences don't sound completely normal to our ears because he inverts (swaps the order of) pairs of phrases before speaking. For example, if Yoda were to say "believe you I don't" we know a non-Yoda speaker saying the same thing would say "I don't believe you." We can mark Yoda's sentences to recover the original sequence with the following hierarchical annotation:

< [believe you] [I don't] >

The "[]" means preserve the relative order of the phrases inside the brackets (of which there must be exactly two) and the "<>" means invert the order. So in this case the annotation means "you" comes after "believe" and "don't" comes after "I", but "I don't" comes before "believe you". Here's another example:

< patience [< must you > have] > becomes you must have patience

This method of forming Yoda-isms is an example of an unlabeled inversion transduction grammar, a powerful formalism used in machine translation.

Answer these questions in the Answer Sheets.

E1. For each of these annotated Yoda-isms, write down the original sentence

 a. < go [you must] >
 b. < [strong [with [the force]]] < [this [one is]] < think I > > >
 c. < [< < home [milk < coming before >]] > [< to forget > < up pick >] > tonight] < don't please > >

E2. For each of these Yoda-isms of the sentence "use the Force Luke" write the annotation that recovers the original. If no such annotation is possible write "NOT POSSIBLE". If more than one annotation that recovers the original sentence is possible, choose any legal annotation but write "MORE POSSIBLE" next to the answer.

 a. use Force Luke the
 b. Luke the Force use
 c. Luke Force the use
 d. the Luke use Force
 e. the Luke Force use

E3. If Yoda were not bound by the rules of this puzzle and could reorder the four words of the sentence "use the Force Luke" in any way he likes, how many ways could he do this?

E4. Since Yoda is bound by the rules of this puzzle, how many ways can he actually reorder "use the Force Luke"?

E5. For each of the following sentences, write down the number of unique permutations of the sentence and the number of unique Yoda-isms that can be formed from the sentence. Note the original sentence does count as one of the permutations.

 a. do or do not
 b. Luke I am your father
 c. a galaxy far far away
In Japanese as in many languages, proper names (names of people and places) often have a literal translation that describes some local feature (e.g. Littlefield, Whitehill, Longridge). Here are some Japanese personal or place names and their jumbled up literal translations into English.

F1. Your task is to match up the names and the translations; write your answers in the Answer Sheets. Note that Japanese distinguishes long and short vowels, but that vowel length distinction is not shown here. Note also that in these examples, 'mount' and 'mountain' are different words, as are 'field' and 'rice-field'.

<table>
<thead>
<tr>
<th>English spelling of Japanese names</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ota</td>
<td>A. Big slope</td>
</tr>
<tr>
<td>2. Nakayama</td>
<td>B. Tree river</td>
</tr>
<tr>
<td>3. Kigawa</td>
<td>C. Slope of the mountain</td>
</tr>
<tr>
<td>4. Kazan</td>
<td>D. Field village</td>
</tr>
<tr>
<td>5. Murakami</td>
<td>E. Above the village</td>
</tr>
<tr>
<td>6. Kagawa</td>
<td>F. Above the river</td>
</tr>
<tr>
<td>7. Ono</td>
<td>G. Middle of the rice-field</td>
</tr>
<tr>
<td>8. Nomura</td>
<td>H. Little field</td>
</tr>
<tr>
<td>9. Tanaka</td>
<td>I. Middle mountain</td>
</tr>
<tr>
<td>10. Sakuragi</td>
<td>J. Original rice-field</td>
</tr>
<tr>
<td>11. Nihon</td>
<td>K. Cherry tree</td>
</tr>
<tr>
<td>12. Osaka</td>
<td>L. Fire mount (= volcano)</td>
</tr>
<tr>
<td>13. Yamazaka</td>
<td>M. Big rice-field</td>
</tr>
<tr>
<td>14. Kawakami</td>
<td>N. Fire river</td>
</tr>
<tr>
<td>15. Honda</td>
<td>O. Origin of the sun (= Japan)</td>
</tr>
</tbody>
</table>
As everyone who needs to buy sprockets online knows, the crowd-sourced website Zoink! is the place to go to get real evaluations from real users on real sprockets. You might have the most optaxic sprocket out there, but unless it’s getting reviewed on Zoink! nobody’s going to hear about it.

To ensure quality, the administrators of Zoink! have to continuously delete reviews written by bots, small software programs that pretend to be human reviewers. The admins can’t read every review by hand so they first need to pre-filter obvious garbage. Thankfully, one common mistake bots make is in using multiple adjectives that describe different degrees of a quality in an improper way. (You can think of the adjectives on a scale of intensity, with different scales for different qualities from low intensity to high intensity.) There are correct and incorrect ways of using such ‘scalar’ adjectives when describing sprockets. For example, the phrase:

good but not great (CORRECT)

is perfectly acceptable and should be marked as such. But this phrase:

furious but not angry (WRONG)

makes no sense since furious is stronger than angry and therefore strictly subsumes angry - you can be angry but not so much as to be furious, but you cannot be furious and not be angry. Any review containing this phrase should be thrown away immediately since it definitely came from a bot rather than a human speaker.

There are also some unclear cases. This phrase:

furious but not good (MAYBE)

seems odd since it compares two adjectives from different scales (anger and goodness). Such a review should raise a red flag but be inspected more closely before being thrown out.

Oh but the sprocket marketplace is incredibly hip and so everyone writes using the latest slang. In order to write filtering software, the Zoink! admins (who are not so hip) first looked at a bunch of snippets from reviews written by real people. Here they are:

1. cromulent but not melaxios
2. not only efrimious but quarmic
3. not only hyxilious but fligranish
4. not only daxic but fligranish
5. not laxaraptic, but just hyxilious
6. not just melaxios but efrimious
7. not only quarmac, but nistrotic
8. shtingly, though not efrimious
9. not tamacious, just efrimious
10. not optaxic, just fligranish
11. not only cromulent but shtingly
12. not nistrotic, but just efrimious
13. not nistrotic, just tamacious
14. wilky but not daxic
15. not daxic, just jaronic
16. jaronic but not hyxilious
17. laxaraptic but not optaxic
Based on these snippets, the admins were able to understand how the different properties are connected so they were ready to decide whether further snippets were

- CORRECT, i.e. they might easily have been written by humans
- WRONG, i.e. they must have been written by bots
- MAYBE, i.e. they might have been written by humans or by bots because they combine points on different scales.

Here is a selection of the further snippets:

A. not only hyxilious but quarmic
B. jaronic but not laxaraptic
C. cromulent but not nistrotic
D. not only tamacious, but melaxious
E. not only shtingly but quarmic
F. not fligranish, just wilky
G. optaxic but not hyxilious
H. cromulent but not jaronic
I. not just optaxic but nistrotic

G1. Can you figure out which of the snippets A-I belong to which category below? Write your answers in the Answer Sheets.

a. CORRECT (4 snippets)
b. WRONG (2 snippets)
c. MAYBE (3 snippets)
Shan and **Lao** are Tai languages from Southeast Asia. Shan is spoken in Myanmar and Thailand by about 3 million people, and Lao is spoken in Laos and Thailand by about 20 million. They are quite closely related, but are essentially mutually incomprehensible due to grammatical changes in both languages. Similarly, they are both written in writing systems that descend from the ancient Sanskrit script Brahmi, but these writing systems have rather different ways of marking the same sounds. The Shan writing system is a modification of the alphabet used by Burmese and Mon, whereas the Lao script is a streamlined form of the Thai alphabet.

Note: the diacritics (accent marks) above the Shan and Lao vowels in the Roman transcription of the native terms for the two languages shown above serve to mark tone. The doubled vowels indicate long vowels.

H1. Your task is to determine what goes in the blanks in the Shan and Lao columns; write your answers in the Answer Sheets. If you think that more than one answer is possible, write the likeliest one first, then the second-likeliest, and so on.

<table>
<thead>
<tr>
<th>Shan</th>
<th>Lao</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>တွင်း</td>
<td>ထားေ</td>
<td>belly</td>
</tr>
<tr>
<td>လုၵ်ႈ</td>
<td>လိူတ်ႈ</td>
<td>child</td>
</tr>
<tr>
<td>လုႃႇ</td>
<td>မိတ်ႈ</td>
<td>knife</td>
</tr>
<tr>
<td>မၢၵ်ႇ</td>
<td>နိူဝ်ႉ</td>
<td>fruit</td>
</tr>
<tr>
<td>မၢႆႉ</td>
<td>နိူဝ်ႉ</td>
<td>mother’s younger sibling</td>
</tr>
<tr>
<td>မၢႆႉ</td>
<td>နိူဝ်ႉ</td>
<td>left</td>
</tr>
<tr>
<td>မၢႆႉ</td>
<td>နိူဝ်ႉ</td>
<td>to dry in the sun</td>
</tr>
<tr>
<td>နၢႆႉ</td>
<td>နိူဝ်ႉ</td>
<td>to embrace</td>
</tr>
<tr>
<td>လႅတ်ႇ</td>
<td>အAccessible</td>
<td>to pound</td>
</tr>
</tbody>
</table>
(H) Phàasàa and Pháasàa (2/2)

<table>
<thead>
<tr>
<th>Shan</th>
<th>Lao</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>႑ႋ၀၂</td>
<td>မခင်</td>
<td>to roar</td>
</tr>
<tr>
<td>ႋႋ၀၂</td>
<td>မခင်း</td>
<td>to split</td>
</tr>
<tr>
<td>ႁႋ၀၂ ဗမ်း</td>
<td>မခင်းဗမ်း</td>
<td>tongue</td>
</tr>
<tr>
<td>ႉ၀၂</td>
<td>မီး</td>
<td>wood</td>
</tr>
<tr>
<td>ႏိ၁၁၈၀၂</td>
<td>(b) မိူး</td>
<td>to crouch</td>
</tr>
<tr>
<td>(d) ပိုခ်</td>
<td>ၵိုခ်</td>
<td>eight</td>
</tr>
<tr>
<td>(f) ပြပါ</td>
<td>ၵိုပါ</td>
<td>rind</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Shan</th>
<th>Lao</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>႑၀၁၀၂၀၂</td>
<td>လေသ</td>
<td>to seek</td>
</tr>
<tr>
<td>ႋ၀၁၀၂၀၂</td>
<td>လိုသ</td>
<td>to suck</td>
</tr>
<tr>
<td>ႁ၀၁၀၂၀၂</td>
<td>လိုး</td>
<td>wing</td>
</tr>
<tr>
<td>ႉ၀၁၀၂</td>
<td>(a) လို</td>
<td>bad</td>
</tr>
<tr>
<td>ႏိ၁၁၈၀၂</td>
<td>(c) လိုခ်</td>
<td>to pull</td>
</tr>
<tr>
<td>(e) ပိုးခ်</td>
<td>ၵိုးခ်</td>
<td>horse</td>
</tr>
</tbody>
</table>

H2. Out of the symbols ႑, ႋ, ႁ, ဗ in Shan, and ႋ, ႀ, ႀ in Lao, which represent consonants, which vowels, and which tones?
Contest Booklet

Name: __

Contest Site: ___

Site ID: ___

City, State: __

Grade: ______

Start Time: ___
End Time: ___

Please also make sure to write your registration number and your name on each page that you turn in.

SIGN YOUR NAME BELOW TO CONFIRM THAT YOU WILL NOT DISCUSS THESE PROBLEMS WITH ANYONE UNTIL THEY HAVE BEEN OFFICIALLY POSTED ON THE NACLO WEBSITE IN APRIL.

Signature: __

REGISTRATION NUMBER

The North American Computational Linguistics Olympiad
www.naclo.cs.cmu.edu
(A) The Big Dog and the Young Man
1. a. b. c. d. e. f. g. h.

(B) Delphi has the Answers
1. a. b. c.
 d. e. f.
 g. h. i.
 j. k.

(C) Aymara Rules
1.
2.

n a c l o
(D) Elder Futhark Runes

1. a. b. c. d. e. f. g. h. i.

2.

3. a. b.

c.

(E) Use the Force

1. a.

b.

c.

2. a.

b.

c.

d.

e.

3.

4.

5. a. Permutations

Yoda-isms

b. Permutations

Yoda-isms
(E) Use the Force (cont.)
 c. Permutations
 Yoda-isms

(F) My Friend Nomura from Osaka
 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.

(G) Zoink!
 1. a. CORRECT
 b. WRONG
 c. MAYBE

(H) Phàasàa and Pháasàa
 1. a.
 b.
 c.
 d.
 e.
 f.
 2. Consonants
 Vowels
 Tones

[Diagram of characters]