March 9, 2017
North American Computational Linguistics Olympiad 2017
www.nacloweb.org

The Eleventh Annual
North American Computational Linguistics Olympiad 2017
www.nacloweb.org

Invitational Round
March 9, 2017

Serious language puzzles that are surprisingly fun!
-Will Shortz, Crossword editor of The New York Times and Puzzlemaster for NPR
Welcome to the eleventh annual North American Computational Linguistics Olympiad! You are among the few, the brave, and the brilliant to participate in this unique event. In order to be completely fair to all participants across North America, we need you to read, understand, and follow these rules completely.

Rules

1. The contest is four hours long and includes ten problems, labeled I to R.
2. Follow the facilitators’ instructions carefully.
3. If you want clarification on any of the problems, talk to a facilitator. The facilitator will consult with the jury before answering.
4. You may not discuss the problems with anyone except as described in items 3 & 11.
5. Each problem is worth a specified number of points, with a total of 100 points. **In the Invitational Round, some questions require explanations.** Please read the wording of the questions carefully.
6. All your answers should be in the Answer Sheets at the end of this booklet. ONLY THE ANSWER SHEETS WILL BE GRADED.
7. Write your name and registration number on each page of the Answer Sheets’
 Here is an example: Jessica Sawyer #850
8. The top students from each country (USA and Canada) will be invited to the next round, which involves online practices before the international competition in Ireland.
9. Each problem has been thoroughly checked by linguists and computer scientists as well as students like you for clarity, accuracy, and solvability. Some problems are more difficult than others, but all can be solved using ordinary reasoning and some basic analytic skills. You don’t need to know anything about linguistics or about these languages in order to solve them.
10. If we have done our job well, very few people will solve all these problems completely in the time allotted. So, don’t be discouraged if you don’t finish everything.
11. **DO NOT DISCUSS THE PROBLEMS UNTIL THEY HAVE BEEN POSTED ONLINE! THIS MAY BE A COUPLE OF MONTHS AFTER THE END OF THE CONTEST.**

Oh, and have fun!
NACLO 2017 Organizers

Program Committee:
Adam Hesterberg, Massachusetts Institute of Technology (co-chair)
Alan Chang, University of Chicago
Aleka Blackwell, Middle Tennessee State University
Alex Wade, Stanford University
Alexander Iriza, Princeton University
Andrew Lamont, University of Massachusetts, Amherst
Babette Newsome, Aquinas College
Ben Sklaroff, University of California, Berkeley
Caroline Ellison, Stanford University
Daniel Lovstesd, McGill University
David McClosky, IBM
David Mortensen, Carnegie Mellon University
David Palfreyman, Zayed University
Dick Hudson, University College London
Dorottya Demszky, Princeton University
Dragomir Radev, Yale University (co-chair)
Elisabeth Mayer, Australian National University
Elysa Warner, University of Cambridge
Harold Somers, All Ireland Linguistics Olympiad
Harry Go, Washington University in St. Louis
Heather Newell, Université du Québec à Montréal
James Pustejovsky, Brandeis University
Jason Eisner, Johns Hopkins University
Jonathan Graehl, SDL International
Jonathan Kummerfeld, University of Michigan
Jonathan May, ISI
Jordan Boyd-Graber, University of Colorado
Jordan Ho, University of Toronto
Josh Falk, University of Chicago
Julia Buffinton, University of Maryland
Kai Low, University College London
Kevin Watson, University of Canterbury
Lars Hellan, Norwegian University of Science and Technology
Lori Levin, Carnegie Mellon University
Lynn Clark, University of Canterbury
Mary Laughren, University of Queensland
Oliver Sayeed, University of Cambridge
Patrick Littell, Carnegie Mellon University
Rachel McEnroe, University of Chicago
Susan Barry, Manchester Metropolitan University
Tom McCoy, Yale University
Tom Roberts, University of California, Santa Cruz
Verna Rieschild, Macquarie University
Wesley Jones, University of Chicago
NACLO 2017 Organizers (cont’d)

Problem Credits:
Problem I: Aleka Blackwell
Problem J: Babette Newsome
Problem K: Jonathan Kummerfeld
Problem L: Samuel Andersson, Oliver Sayeed, and Elysa Warner
Problem M: Aleka Blackwell
Problem N: Kai Low Rui Hao
Problem O: Jordan Ho
Problem P: Heather Newell
Problem Q: Milena Veneva
Problem R: Daniel Lovsted

Organizing Committee:
Adam Hesterberg, Massachusetts Institute of Technology
Adrienne Ballsmeier
Aleka Blackwell, Middle Tennessee State University
Alex Wade, Stanford University
Alexander Iriza, Princeton University
Andrew Lamont, University of Massachusetts, Amherst
Bill Huang, Princeton University
Caroline Ellison, Stanford University
Daniel Lovsted, McGill University
David Mortensen, Carnegie Mellon University
Deven Lahoti, Massachusetts Institute of Technology
Dorottya Demszky, Princeton University
Dragomir Radev, Yale University
Haley Barbieri, Bennington College
Harry Go, Washington University in Saint Louis
Heather Newell, Université du Québec à Montréal
James Pustejovsky, Brandeis University
James Bloxham, Massachusetts Institute of Technology
Janis Chan, University of Western Ontario
Jordan Ho, University of Toronto
Josh Falk, University of Chicago
Julia Buffinton, University of Maryland
Lori Levin, Carnegie Mellon University
Mary Jo Bensasi, Carnegie Mellon University
Matthew Gardner, Allen Institute for Artificial Intelligence
Patrick Littell, Carnegie Mellon University
Rachel McEnroe, University of Chicago
Simon Huang, University of Waterloo
Stella Lau, University of Cambridge
Tom McCoy, Yale University
Tom Roberts, University of California, Santa Cruz
Wesley Jones, University of Chicago
Yilin Guo, University of Michigan
Yilu Zhou, Fordham University
NACLO 2017 Organizers (cont’d)

US Team Coaches:
Dragomir Radev, Yale University
Lori Levin, Carnegie Mellon University

Canadian Coordinator and Team Coach:
Heather Newell, Université du Québec à Montréal
Daniel Lovsted, McGill University

USA Contest Site Coordinators:
Brandeis University: James Pustejovsky
Brigham Young University: Deryle Lonsdale
Carnegie Mellon University: Mary Jo Bensasi, Lori Levin
College of William and Mary: Dan Parker
Columbia University: Brianne Cortese, Kathy McKeown
Cornell University: Abby Cohn, Sam Tilsen
Dartmouth College: Michael Leftkowitz
Emory University: Jinho Choi, Phillip Wolff
Georgetown University: Emma Manning
Goshen College: Peter Miller
Indiana University: Melinda Bristow-Meadows, Rachel Hertz
Johns Hopkins University: Rebecca Knowles
Massachusetts Institute of Technology: Adam Hesterberg, Sophie Mori
Middle Tennessee State University: Aleka Blackwell
Minnesota State University Mankato: Rebecca Bates, Louise Chan, Dean Kelley, Richard Roiger
Montclair State University: Anna Feldman
Northeastern Illinois University: J. P. Boyle, R. Hallett, Judith Kaplan-Weinger, K. Konopka
Ohio State University: Micha Elsner, Michael White
Oregon State University: Liang Huang
Princeton University: Dora Demszky, Yiwei Liu, Misha Khodak, Christiane Fellbaum
San Diego State University: Rob Malouf
Southern Illinois University: Vicki Carstens, Jeffrey Puniske
SpringLight Education Institute: Sherry Wang
Stanford University: Chris Manning, Ignacio Cases
Stony Brook University: Lori Repetti, Sarena Romano
the Mathletics: Shirley Ma
Union College: Kristina Striegelnitz, Nick Webb
University of Alabama, Birmingham: Steven Bethard
University of California, Irvine: Sameer Singh
University of Colorado at Boulder: Silva Chang
University of Houston: Thamar Solorio
University of Illinois at Urbana-Champaign: Julia Hockenmaier, Benjamin Leff, Greg Sigalov
University of Maryland: Kasia Hitzchenko
University of Massachusetts, Amherst: Stacey Chobany, Andrew Lamont, Mina Puig, Andrew Wang, UMass Linguistics Club
University of Massachusetts, Lowell: Anna Rumshisky, David Donahue, Willie Boag
University of Memphis: Vasile Rus
University of Michigan: Steven Abney, Marcus Berger, Sally Thomason
University of Nebraska, Omaha: Parvathi Chundi
University of North Carolina, Charlotte: Hossein Hematsialam, Wlodek Zadrozny
University of North Texas: Genene Murphy, Rodney Nielsen
University of Pennsylvania: Marianna Apidianaki, Chris Callison-Burch, Anne Cocos, Cheryl Hickey, Mitch Marcus, Derryl Wijaya
University of Southern California: Jonathan Gordon, Nima Pourdamerghani
University of Texas at Dallas: Jing Lu, Vincent Ng, Isaac Persing
University of Texas, Austin: Rainer Mueller
University of Utah: Heather Burkhart
University of Washington: Jim Hoard, Joyce Parvi
University of Wisconsin, Madison: Steve Lacy
University of Wisconsin, Milwaukee: Joyce Boyland, Hanyon Park, Gabriella Pinter, Anne Pycha
Western Washington University: Kristin Denham
Yale University: Tom McCoy, Raffaella Zanuttini
Canada Contest Site Coordinators:
Dalhousie University: Magdalena Jankowska, Vlado Keselj, Dijana Kosmajac, Armin Sajadi
McGill University: Michael Wagner, Lisa Travis
Simon Fraser University: John Alderete, Marion Caldecott, Maite Taboada
University of Alberta: Herbert Colston, Sally Rice
University of British Columbia: Hotze Rullmann, Jozina Vander Klok
University of Calgary: Dennis Storoshenko
University of Ottawa: Diana Inkpen
University of Toronto: Jordan Ho, James Hyett
University of Western Ontario: Janis Chang

High school sites: Dragomir Radev

Booklet Editors:
Andrew Lamont, University of Massachusetts, Amherst
Dragomir Radev, University of Michigan

Sponsorship Chair:
James Pustejovsky, Brandeis University

Sustaining Donors
Linguistic Society of America
NAACL
NSF
Yahoo!

Major Donors
ARL
DARPA

University Donors
Brandeis University
Carnegie Mellon University
University of Michigan

Many generous individual donors

Special thanks to:
Tatiana Korelsky, Joan Maling, and D. Terrence Langendoen, US National Science Foundation
James Pustejovsky for his personal sponsorship
And the hosts of the 100+ High School Sites

All material in this booklet © 2017, North American Computational Linguistics Olympiad and the authors of the individual problems. Please do not copy or distribute without permission.
NACLO 2017 Sites

University of Colorado Boulder

SIMON FRASER UNIVERSITY

As well as more than 120 high schools throughout the USA and Canada
Basque is the language spoken by approximately 700,000 Basques inhabiting a region along the Pyrenees on the border of northern Spain and southwestern France. Below are some sentences in Basque along with their unmatched translations into well-formed English.

<table>
<thead>
<tr>
<th>Basque</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Nire anaiarekin bizi da.</td>
<td>(A) We’ll go home.</td>
</tr>
<tr>
<td>b. Neskaren kotxea nahi dut.</td>
<td>(B) I eat pasta with wine.</td>
</tr>
<tr>
<td>c. Jantziko naiz eta joango gara.</td>
<td>(C) My father lives in California.</td>
</tr>
<tr>
<td>d. Umea kalean erori da.</td>
<td>(D) The woman has read the book.</td>
</tr>
<tr>
<td>e. Nire aitak erantzuna daki.</td>
<td>(E) He lives with my brother.</td>
</tr>
<tr>
<td>f. Ardoa bukatu duzu?</td>
<td>(F) I don’t know.</td>
</tr>
<tr>
<td>g. Nire aita Californian bizi da.</td>
<td>(G) My son has bought a new car.</td>
</tr>
<tr>
<td>h. Etxera joango gara.</td>
<td>(H) I’ll get dressed and we’ll go.</td>
</tr>
<tr>
<td>i. Nire semeak kotxe berria erosi du.</td>
<td>(I) The Atlantic is not a forest.</td>
</tr>
<tr>
<td>j. Ez dakit.</td>
<td>(J) I want the girl’s car.</td>
</tr>
<tr>
<td>k. Emakumeak liburua irakurri du.</td>
<td>(K) Have you finished the wine?</td>
</tr>
<tr>
<td>l. Atlantikoa ez da basoa.</td>
<td>(L) My father knows the answer.</td>
</tr>
<tr>
<td>m. Ardoarekin pasta jaten dut.</td>
<td>(M) The child has fallen in the street.</td>
</tr>
</tbody>
</table>

Answer the following questions in the Answer Sheets.

I1. Match the correct English translation to the sentences in Basque.

I2. Translate the following Basque sentences into English.

a. Nesak problema daki.
b. Emakumearen etxea Europan da.
c. Nire aitaren liburu berria irakurri dut.
d. Aitarekin hotelera joango naiz.
(I) Basque Tasque (2/2)

13. Translate the following English sentences into Basque using the additional Basque words below as needed.

<table>
<thead>
<tr>
<th>Basque</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>zuri</td>
<td>white</td>
</tr>
<tr>
<td>Inglattera</td>
<td>England</td>
</tr>
<tr>
<td>familia</td>
<td>family</td>
</tr>
</tbody>
</table>

a. I want white wine.
b. The white wine is new.
c. My father’s son lives in England.
d. My family has bought a new house.

14. Explain your answer.
Norwegian is a Germanic language spoken by over 5 million people; it is one of the official languages of Norway. Below are some Norwegian sentences and their English translations mixed up.

Answer the following questions in the Answer Sheets.

J1. Match the correct English translation to its Norwegian counterpart.

J2. Nouns in Norwegian can belong to one of three classes: Common (masculine-feminine), Feminine, or Neuter. The class determines how the noun can be used with determiners (words such as “the”, “a”, “an”) and be made plural. The nouns you encountered above are all regular and feature examples of all three classes:

<table>
<thead>
<tr>
<th>Norwegian noun</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>kvinne</td>
<td>Feminine</td>
</tr>
<tr>
<td>bil</td>
<td>Common</td>
</tr>
<tr>
<td>eple</td>
<td>Neuter</td>
</tr>
</tbody>
</table>

Here are some more regular Norwegian nouns and their translations:

<table>
<thead>
<tr>
<th>Norwegian noun</th>
<th>Class</th>
<th>English Translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>jente</td>
<td>Feminine</td>
<td>girl</td>
</tr>
<tr>
<td>hund</td>
<td>Common</td>
<td>dog</td>
</tr>
<tr>
<td>hotell</td>
<td>Neuter</td>
<td>hotel</td>
</tr>
</tbody>
</table>
Now, translate the following into Norwegian:

a. The girl stops here.
b. A girl has a hotel.
c. I have the dogs.
d. The girl has dogs.

J3. Here is a little more Norwegian vocabulary without any information about the classes the slightly irregular nouns belong to.

<table>
<thead>
<tr>
<th>Norwegian word</th>
<th>English translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>sko</td>
<td>shoe</td>
</tr>
<tr>
<td>mann</td>
<td>man</td>
</tr>
<tr>
<td>ikke</td>
<td>not</td>
</tr>
</tbody>
</table>

With what you have learned about Norwegian nouns, translate the following sentences from Norwegian into English:

a. Mennene har epler.
b. Kvinna har ikke skoene.
c. Jeg har ikke eplene.

J4. Explain your answer.
Sometimes a sentence can be made longer by adding words in a regular way. In some cases a consistent pattern of several words can be added (“climbing up a tree” and “growing on a planet” use different words, but have the same word types):

I saw a cat.
I saw a cat climbing up a tree.
I saw a cat climbing up a tree growing on a planet.
I saw a cat climbing up a tree growing on a planet orbiting around the sun.

I live in the house.
I live in the house on the hill.
I live in the house on the hill in the city.
I live in the house on the hill in the city on the border.

Answer the following questions in the Answer Sheets.

K1. First, write down the word types that form each pattern, using Adjective, Verb, Noun, Preposition, and Article (a table of words and types is included at the end of the problem):

a. I saw a cat climbing up a tree growing on a planet orbiting around the sun.

b. I live in the house on the hill in the city on the border.

Now, for each case, write a fifth line that follows the pattern. You may use words not shown in the table below, but the words you use should follow the patterns you identified:

K2. A computer program was written to identify these patterns. It worked as follows:

- Set current guess to None
- Check whether the last word’s type matches the second-last word’s type, if it does, change guess to the last word’s type
- Check whether the last pair of words’ types match the pair before them, if they do, change guess to the types of the last pair
- Check whether the last three words’ types match the three before them, if they do, change guess to the types of the last three words
- (and so on until the first half of the sentence and second half of the sentence are being compared)
- Return the current guess

If each time K words are compared it takes K steps, how many steps will it take to run the program on this example: I run and jump and twirl.

K3. For the two examples below, would the computer find the right pattern? If so, write ‘yes’, if not, write ‘no’ and what pattern (Verb, Noun, etc.), it would return instead.

a. I saw a cat climbing up a tree growing on a planet orbiting around the sun.
b. I live in the house on the hill in the city on the border.
(K) Sentences that go on and on and on and on and on (2/2)

K4. Some sentence patterns can go on and on and on, but the computer program above will never be able to find a repeating sequence in them, no matter how long the sentences go. Give an example of such a sentence pattern.

Word Types

All the words used in the examples above can be found in the lists of word types below. In the first question you may use words in your example that are not shown here.

<table>
<thead>
<tr>
<th>Noun</th>
<th>Verb</th>
<th>Preposition</th>
<th>Adjective</th>
<th>Article</th>
<th>Conjunction</th>
</tr>
</thead>
<tbody>
<tr>
<td>border</td>
<td>climbing</td>
<td>around</td>
<td>blue</td>
<td>a</td>
<td>and</td>
</tr>
<tr>
<td>cat</td>
<td>growing</td>
<td>in</td>
<td>nice</td>
<td>the</td>
<td></td>
</tr>
<tr>
<td>city</td>
<td>have</td>
<td>on</td>
<td>waterproof</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hat</td>
<td>jump</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hill</td>
<td>live</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>house</td>
<td>orbiting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>run</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>planet</td>
<td>saw</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sun</td>
<td>twirl</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tree</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Abkhaz is a Caucasian language predominantly spoken by around 100,000 people in the disputed territory of Abkhazia, and by a few thousand people in Turkey, Georgia, Syria, Russia, and Jordan. Among other things, it is known for having an extraordinary number of consonants (58 in the literary dialect). Here are some Abkhaz sentences in simplified transcription and their corresponding English translations. Notes: The cherkeska is an item of traditional Caucasian clothing, a single breasted collarless coat. A billy-goat is a male goat; a nanny-goat is a female goat. hʷ, ʃʷ, p', chʷ, kʷ, j, k', z', c', tʃ', x, and ū are consonants. a is a vowel.

<table>
<thead>
<tr>
<th>Abkhaz</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anchʷa aparahʷa ajʷup'</td>
<td>The god is wearing the apron.</td>
</tr>
<tr>
<td>Anchʷa ajkʷa rajop'</td>
<td>The mothers are wearing the trousers.</td>
</tr>
<tr>
<td>Ael axalpa ajʷup'</td>
<td>The squirrel is wearing the hat.</td>
</tr>
<tr>
<td>Axalpa bjʷup'</td>
<td>You (sg) are wearing the hat.</td>
</tr>
<tr>
<td>Ajmsakʷa jʷajop'</td>
<td>You (pl) are wearing the felt boots.</td>
</tr>
<tr>
<td>An akʷam3ʷa ljʷup'</td>
<td>The mother is wearing the cherkeska.</td>
</tr>
<tr>
<td>Ajmaakʷa hajop'</td>
<td>We are wearing the shoes.</td>
</tr>
<tr>
<td>Ak'asə sjʷup'</td>
<td>I am wearing the shawl.</td>
</tr>
<tr>
<td>Atahʷmadachʷa ac'atc'kʷa rʃʷup'</td>
<td>The old men are wearing the coats.</td>
</tr>
<tr>
<td>Abachʷa akʷam3ʷakʷa rʃʷup'</td>
<td>The sons are wearing the cherkeskas.</td>
</tr>
<tr>
<td>Adzab abjmsakʷa lajop'</td>
<td>The girl is wearing the felt boots.</td>
</tr>
<tr>
<td>Ab ajkʷa ajop'</td>
<td>The billy-goat is wearing the trousers.</td>
</tr>
<tr>
<td>Atahʷmada aparahʷa ijʷup'</td>
<td>The old man is wearing the apron.</td>
</tr>
<tr>
<td>Abkʷa akʷam3ʷakʷa rʃʷup'</td>
<td>The billy-goats are wearing the cherkeskas.</td>
</tr>
<tr>
<td>Aeʃkʷa ak'asakʷa rfʷup'</td>
<td>The squirrels are wearing the shawls.</td>
</tr>
</tbody>
</table>

Answer these questions in the Answer Sheets.

L1. Translate the following sentences into English:
 a. Adz祝abchʷa ajmaakʷa rajop'.
 b. Aba ajkʷa iʃop'.
 c. Ak’asəkʷa jʃʷup'.

L2. Translate the following sentences into Abkhaz:
 a. You (sg) are wearing the cherkeska.
 b. The nanny-goat is wearing the shawl.
 c. The gods are wearing the felt boots.

L3. Explain your answer.
Māori is an Austronesian language spoken in New Zealand by 150,000 people. Here are some sentences in Māori and their English translations. Emphatic phrases in English are pronounced with extra stress. A sentence like 'Bob (emphatic) drank the water' means the same as 'It was Bob who drank the water.'

<table>
<thead>
<tr>
<th>Māori</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ka moe au ki tātahi.</td>
<td>I will sleep at the beach.</td>
</tr>
<tr>
<td>Kua kite rātou i Te Maioro Nui Whakaharahara o Haina.</td>
<td>They have seen the Great Wall of China.</td>
</tr>
<tr>
<td>Ka patu koe i te pōro.</td>
<td>You will hit the ball.</td>
</tr>
<tr>
<td>Kua haere au ki te hui.</td>
<td>I have gone to the meeting.</td>
</tr>
<tr>
<td>I patua te taramu e te tama.</td>
<td>The drum was hit by the boy.</td>
</tr>
<tr>
<td>Kāore au e haere ki te marae.</td>
<td>I will not go to the courtyard.</td>
</tr>
<tr>
<td>I korerotia ngā kupu e te tama.</td>
<td>The words were spoken by the boy.</td>
</tr>
<tr>
<td>Kāore te whare i hangaia e Bob.</td>
<td>The house was not built by Bob.</td>
</tr>
<tr>
<td>I patu Bob i te taramu.</td>
<td>Bob hit the drum.</td>
</tr>
<tr>
<td>Kua mahia te mahi e au.</td>
<td>The work has been done by me.</td>
</tr>
<tr>
<td>I whāia au e te pūru.</td>
<td>I was chased by the bull.</td>
</tr>
<tr>
<td>Nā te kōtiro te taramu i patu.</td>
<td>The girl (emphatic) hit the drum.</td>
</tr>
<tr>
<td>Mā te wahine ngā pereti e horoi.</td>
<td>The woman (emphatic) will wash the plates.</td>
</tr>
</tbody>
</table>

Answer these questions in the Answer Sheets.

M1. Translate into English.
 a. Ka haere rātou ki tātahi.
 b. Kua patu koe i te pōro.
 c. I hangaia te whare e Bob.
 d. Nā te tama te kōtiro i kōrero.
 e. Mā te pūru ngā tama e whai.
 f. Kāore au i haere ki te marae.

M2. Translate into Māori.
 a. They have slept at the meeting.
 b. You will go to the Great Wall of China.
 c. I will not sleep at the beach.
 d. The bull has been washed by you.
 e. The boy (emphatic) did the work.
 f. The woman went to the house.

M3. Explain your answer.
Bulgarian is a Slavic language and, along with the closely related Macedonian language, has several characteristics that set it apart from all other Slavic languages. Old Bulgarian was a highly synthetic language; synthetic languages express meaning by building complex words from smaller pieces. Modern day Bulgarian is a typical analytic language, one which expresses meaning more with word order, like English. Bulgarian currently uses the Cyrillic script, created after the older Glagolitic alphabets. In this problem, a Roman transliteration is used. The letter ‘ǎ’ represents the vowel in the English word *but*.

Here are some sentences given in Bulgarian and the translated equivalents (in no particular order) in English.

<table>
<thead>
<tr>
<th>Bulgarian</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Veshterǎt nahrani maymunata.</td>
<td>(A) Your son watched you.</td>
</tr>
<tr>
<td>b. Kamila vǎrvya.</td>
<td>(B) The girl hugged the cat.</td>
</tr>
<tr>
<td>c. Momicheto pregǎrna kotkata.</td>
<td>(C) You dressed yourself.</td>
</tr>
<tr>
<td>d. Veshtitsata prokle kotkata.</td>
<td>(D) The cat scratched you.</td>
</tr>
<tr>
<td>e. Kotkata prokle tvoya sin.</td>
<td>(E) You fed the son.</td>
</tr>
<tr>
<td>f. Ti nahrani sina.</td>
<td>(F) The witch cursed the cat.</td>
</tr>
<tr>
<td>g. Kotkata te odraska.</td>
<td>(G) The camel walked.</td>
</tr>
<tr>
<td>h. Ti skochi.</td>
<td>(H) The cat cursed your son.</td>
</tr>
<tr>
<td>i. Tvoyat sin te gleda.</td>
<td>(I) The wizard fed the monkey.</td>
</tr>
<tr>
<td>j. Veshterǎt pregǎrna edna kamila.</td>
<td>(J) The son dressed your baby.</td>
</tr>
<tr>
<td>k. Ti se obleche.</td>
<td>(K) You jumped.</td>
</tr>
<tr>
<td>l. Sinǎt obleche tvoeto bebe.</td>
<td>(L) The wizard hugged a camel.</td>
</tr>
</tbody>
</table>

Answer these questions in the Answer Sheets.

N1. Match the Bulgarian sentences with their corresponding English translations.

N2. Translate the following sentences into English:

- a. Maymunata gleda tvoyata veshtitsa.
- b. Tvoyata kamila obleche edno momiche.
- c. Veshterǎt se prokle.
- d. Ti pregǎrna bebeto.
- e. Ti vǎrvya.
- f. Ti prokle edin veshter.
N3. Translate the following sentences into Bulgarian:

a. The witch dressed you.
b. The baby watched the girl.
c. The monkey jumped.
d. You hugged a son.
e. Your son dressed a baby.

N4. Explain your answer.
In English, we may find pairs of sentences that are minimally different, but in which the pronouns (words like “he”, “she”, or “it”) refer back to completely different antecedents (where a pronoun’s antecedent is the word or phrase that the pronoun refers to). For example, consider the following sentences:

James scolded Caleb because he stole the diamonds.
James scolded Caleb because he was angry.

In these two sentences, the pronoun “he” refers to two different antecedents: “James” and “Caleb”. Figuring out whether the pronoun refers to James or Caleb relies on common sense and world knowledge – those who steal diamonds should be scolded, and those doing the scolding are usually angry. This knowledge is something that humans have, but computers don’t, making pronoun disambiguation difficult.

In the alternate universe of Terra, where people speak a language similar to English but with variants of many words, 6 rather clumsy sisters (named Barnard, Holyoke, Radcliffe, Smith, Vassar, and Wellesley) are all going to a party.* They each own exactly one of the following types of items: a lapsine, a ricktick, a plumbus, or a riplin.

The following ensued (these sentences are in no particular order):

1. Smith catabulled Vassar because she elamped her plumbus.
2. Barnard elamped Radcliffe’s lapsine because she was not molistic, so Radcliffe catabulled Barnard.
3. Holyoke did not stipe because Vassar’s riplin elamped and Holyoke could not mirt there.
4. Smith stiped ravint Wellesley even though her plumbus elamped.
5. Barnard’s ricktick did not schleem Radcliffe’s lapsine because it was too efrimious.
6. Radcliffe un-elamped her lapsine and stiped bevint everyone else who stiped.
7. Vassar catabulled Holyoke because she elamped the plumbus (which happened at about the same time as when Holyoke elamped Vassar’s riplin.)
8. Radcliffe’s lapsine did not schleem Holyoke’s riplin because it was too un-efrimious.
9. Vassar stiped ravint Radcliffe because she had a riplin with her.
10. Vassar (using Holyoke’s riplin) stiped bevint Smith.
11. Wellesley stiped bevint Vassar, with her lapsine and Barnard’s ricktick because it schleemed it and no other item.
12. Barnard - one of four lanters who mirted there - stiped ravint everyone else.

Answer these questions in the Answer Sheets.

Q1. Knowing that Barnard’s ricktick is more efrimious than Radcliffe’s lapsine, identify the antecedent to each of the underlined pronouns.

Q2. Given that only one lanter schleems each riplin, list everyone who got to the party in the order that they arrived.

*They have a seventh sister named Bryn Mawr, but she does not factor into this problem.
Proto-Algonquian was spoken about 3000 years ago by the ancestors of the current speakers of the various Algonquian languages, which are spoken in Canada and the USA. The ‘:’ in the data below indicates a long vowel. The ‘θ’ indicates a ‘th’ sound, as in ‘thing’. (sg) is short for singular and (pl) is short for plural; you (pl) could be translated as y’all. (excl) is short for exclusive; we (excl) refers to a group of people including the speaker and someone else, but not the listener.

The Proto-Algonquian words below can be translated as entire sentences in English. Consider the following sentences constructed using the verb wapam ‘to see’. (Simplified data)

<table>
<thead>
<tr>
<th>Proto-Algonquian</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>kewa:pameθehm</td>
<td>‘I see you (sg)’</td>
</tr>
<tr>
<td>kewa:pameθehmwa:</td>
<td>‘I see you (pl)’</td>
</tr>
<tr>
<td>newa:pama:ehma</td>
<td>‘I see him/her’</td>
</tr>
<tr>
<td>newa:pama:ehmaki</td>
<td>‘I see them’</td>
</tr>
<tr>
<td>kewa:pameθehmwa:ena:n</td>
<td>‘we see you (pl)’</td>
</tr>
<tr>
<td>newa:pama:ehmena:na</td>
<td>‘we see him/her’</td>
</tr>
<tr>
<td>kewa:pmiehm</td>
<td>‘you (sg) see me’</td>
</tr>
<tr>
<td>kewa:pama:ehm</td>
<td>‘you (sg) see her/him’</td>
</tr>
<tr>
<td>kewa:pmiehmwa:</td>
<td>‘you (pl) see me’</td>
</tr>
<tr>
<td>kewa:pmiehmwa:ena:n</td>
<td>‘you (pl) see us (excl)’</td>
</tr>
<tr>
<td>newa:pamekwehmena:naki</td>
<td>‘they see us’</td>
</tr>
</tbody>
</table>

Answer these questions in the Answer Sheets.

P1. Translate the following Proto-Algonquian sentences into English, and English sentences into Proto-Algonquian.
 a. kewa:pmiehma:n
 b. ‘we see them’
 c. ‘they see me’

P2. Give translations of the following morphemes (suffixes or prefixes) of Proto-Algonquian:
 a. ne-
 b. -wa:
 c. -eθ
 d. -i
 e. -ehm
 f. -aki

P3. Explain your answer.
The Khakas language is a Siberian Turkic language that is spoken by about 52,000 people in the southern Siberian autonomous Russian republics of Khakassia and Tuva. It is normally written in Cyrillic, but has been transliterated here.

The unfamiliar symbols are pronounced roughly as follows:
- č is like the ch in 'church' (IPA [ʧ])
- ğ is like the ch in 'loch' or German 'Bach', but voiced, as in Dutch (IPA [ɣ])
- ё is like the ng in 'sing'
- y is like the vowel in 'see'
- ŭ is like the French vowel 'u' or German 'ü', pronounced like 'ee' but with the lips rounded
- u is a vowel pronounced like 'urgh', like 'oo' but with the lips spread
- ö is somewhat like the first vowel in 'colonel' (IPA [ø])

Answer these questions in the Answer Sheets.

Q1. Given are arithmetic equations in the Khakas language written in transliteration. All numbers are given as fractions in which no numerator or denominator is greater than 20, and no denominator is equal to 1. All the numbers are positive. Rewrite the equations using numbers.

 a. sygizniŋ piri + iki sygistig = sygizniŋ ÿzi
 b. čyti ÿstig + altɯnɯŋ piri = iki pÿdin pir ikilig
 c. iki toğɯstɯğ + toğɯznɯŋ piri = iki altɯlɯğ
 d. pys pystig + čytiniŋ piri = pir pÿdin pir čytilig
 e. čytiniŋ ikizi + iki pystig = 24/35
 f. altɯnɯŋ ikizi + toğɯznɯŋ piri = sygis on sygistig
 g. pir törttig – ÿs čybirgilig = pir onnuğ

Q2. Write the following numbers in Khakas:

 a. 4
 b. 15
 c. 23

Q3. What is the meaning of the Khakas word pÿdin?

Q4. Explain your answer.
One day, while looking through a storage closet in the linguistics building at her university, Ada discovers a dusty machine labelled the Text-o-matic 1000. She switches it on, and sees the following on the screen:

]|< → <CAN|

Intrigued, she types in her name, and presses enter. The machine whirrs and prints a small slip of paper that reads:

| ADA // CANADA |

She fiddles with the machine and gets the screen to read:

| D → LBERT |

Again, she types in her name and presses enter, and this time the machine prints:

| ADA // ALBERTA |

Finally, she notices a note taped to the top of the machine, which reads:

Important!
1. *Text-o-matic 1000 applies rules in descending order.*
2. *If Text-o-matic 1000 cannot apply a rule, it skips to the next one.*
3. *Before applying the first rule, the Text-o-matic 1000 adds < at the beginning and > at the end of the input word, and it removes them right before printing. If any rule deletes these symbols, the machine will crash!*

Ada decides to use the Text-o-matic 1000 to convert the first twenty cardinal French numbers into their ordinal equivalents. In other words, she wants to find a set of rules so that when any of the first twenty numbers is entered (in written form), the machine prints the corresponding output shown below.

UN // PREMIER	ONZE // ONZIÈME
DEUX // DEUXIÈME	DOUZE // DOUZIÈME
TROIS // TROISIÈME	TREIZE // TREIZIÈME
QUATRE // QUATRIÈME	QUATORZE // QUATORZIÈME
CINQ // CINQUIÈME	QUINZE // QUINZIÈME
SIX // SIXIÈME	SEIZE // SEIZIÈME
SEPT // SEPTIÈME	DIX-SEPT // DIX-SEPTIÈME
HUIT // HUITIÈME	DIX-HUIT // DIX-HUITIÈME
NEUF // NEUVIÈME	DIX-NEUF // DIX-NEUVIÈME
DIX // DIXIÈME	VINGT // VINGTIÈME
(R) Text-o-matic (2/2)

Answer these questions in the Answer Sheets.

R1. Fill in the blanks (one character per blank) to create a set of rules that accomplish Ada’s task. Be sure to also fill out the Answer Sheets.

a. __ __ → __
b. __ __ → __ __ __
c. __ → __
d. __ → __ __ __ __ __
e. __ __ __ __ __ __ → __ __ __ __ __ __ __

R2. Ada tries to use the new set of rules to do the same task for all cardinal numbers below 100, but finds the following two errors:

<table>
<thead>
<tr>
<th>VINGT-ET-UN // VINGT-ET-PREMIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUATRE-VINGTS // QUATRE-VINGTSIÈME</td>
</tr>
</tbody>
</table>

Describe how you could modify the rules above so the outputs are:

<table>
<thead>
<tr>
<th>VINGT-ET-UN // VINGT-ET-UNIÈME</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUATRE-VINGTS // QUATRE-VINGTIÈME</td>
</tr>
</tbody>
</table>

Try to make as few and as minor modifications as you can to fix the problem, while still printing the correct outputs for the first twenty cardinal numbers.

R3. You have been hired to program the Text-o-matic 2000, which will be able to work in both directions, either producing ordinal numbers from cardinal numbers or cardinal numbers from ordinal numbers.

However, it still only contains one set of rules. It produces cardinal numbers from ordinal numbers by “reversing” these rules, undoing each rule (that is, replacing the letters after the arrow with the letters before the arrow) going from the bottom rule to the top rule.

The rules you found above, however, won’t work in the new Text-o-matic 2000. For example, instead of producing SIX from SIXIÈME, they produce SIXE!

Find a set of rules that works in both directions, producing the ordinal numbers from the cardinal numbers when run in the normal direction, and producing the cardinal numbers from the ordinal numbers when “undone” in the reverse direction. Remember to handle the special cases for VINGT-ET-UN and QUATRE-VINGTS!
Contest Booklet

Name: ___

Contest Site: __

Site ID: __

City, State: ___

Grade: ______

Start Time: ___
End Time: __

Please also make sure to write your registration number and your name on each page that you turn in.

SIGN YOUR NAME BELOW TO CONFIRM THAT YOU WILL NOT DISCUSS THESE PROBLEMS WITH ANYONE UNTIL THEY HAVE BEEN OFFICIALLY POSTED ON THE NACLO WEBSITE IN APRIL.

Signature: ___
Answer Sheet (1/9)

(I) Basque Tasque

I1. a. □ □ □ □ □ □ □ □
 b. □ □ □ □ □ □ □ □
 c. □ □ □ □ □ □ □ □
 d. □ □ □ □ □ □ □ □
 e. □ □ □ □ □ □ □ □
 f. □ □ □ □ □ □ □ □
 g. □ □ □ □ □ □ □ □
 h. □ □ □ □ □ □ □ □
 i. □ □ □ □ □ □ □ □
 j. □ □ □ □ □ □ □ □
 k. □ □ □ □ □ □ □ □
 l. □ □ □ □ □ □ □ □
 m. □ □ □ □ □ □ □ □

I2. a. □ □ □ □ □ □ □ □
 b. □ □ □ □ □ □ □ □
 c. □ □ □ □ □ □ □ □
 d. □ □ □ □ □ □ □ □

I3. a. □ □ □ □ □ □ □ □
 b. □ □ □ □ □ □ □ □
 c. □ □ □ □ □ □ □ □
 d. □ □ □ □ □ □ □ □

I4. □ □ □ □ □ □ □ □

(J) The Norwegian Problem / A Norwegian Problem / Norwegian Problems / The Norwegian Problems?

J1. a. □ □ □ □ □ □ □ □
 b. □ □ □ □ □ □ □ □
 c. □ □ □ □ □ □ □ □
 d. □ □ □ □ □ □ □ □
 e. □ □ □ □ □ □ □ □
 f. □ □ □ □ □ □ □ □
 g. □ □ □ □ □ □ □ □
 h. □ □ □ □ □ □ □ □
 i. □ □ □ □ □ □ □ □
 j. □ □ □ □ □ □ □ □

n a c l o
(J) The Norwegian Problem / A Norwegian Problem / Norwegian Problems / The Norwegian Problems?
(cont.)

J2. a.

b.

c.

d.

J3. a.

b.

c.

J4.

(K) Sentences that go on and on and on and on

K1. a.

b.

K2.

n a c l o
(K) Sentences that go on and on and on and on (cont.)

K3. a.
 b.

K4.

(L) The Goat, the Mother, and the Wardrobe

L1. a.
 b.
 c.

L2. a.
 b.
 c.

L3.

n a c l o
(M) It will be you who solves this problem!

M1.
 a.
 b.
 c.
 d.
 e.
 f.

M2.
 a.
 b.
 c.
 d.
 e.
 f.

M3.
Answer Sheet (5/9)

(N) To Be Determined

N1. a. [] b. [] c. [] d. [] e. [] f. [] g. [] h. []
 i. [] j. [] k. [] l. []

N2. a.
 b.
 c.
 d.
 e.
 f.

N3. a.
 b.
 c.
 d.
 e.

N4.

n a c l o
Answer Sheet (6/9)

(O) Common Sense

O1. (1) she [_____] (1) her [_____] (4) her [_____] (5) it [_____]
 (7) she [_____] (9) she [_____] (11) her [_____]
 (11) it (first) [_____] (11) it (second) [_____]

O2.

(P) Do you see what I see?

P1.
a. [_____]
b. [_____]
c. [_____]

P2.
a. [_____]
b. [_____]
c. [_____]
d. [_____]
e. [_____]
f. [_____]

[Image of nalclo]
(P) Do you see what I see? (cont.)
P3.

(Q) Pluses and Minuses
Q1. a.

b.

c.

d.

e.

f.

g.
(Q) Pluses and Minuses (cont.)

Q2.
 a.
 b.
 c.

Q3.

Q4.

(R) Text-o-matic

R1.
 a.
 b.
 c.
 d.
 e.

n a c i l o
(R) Text-o-matic (cont.)

R2.

R3.